VisionAI DataVerse
Observ
English
English
  • Meet DataVerse
  • Data Management
    • Creating Your First Project
    • Import Your Dataset
    • Data Slice - Specific Subsets
    • Data Visualization
      • Image
      • Point Cloud
      • Frame View
      • Sequence View
      • <Use Case> Clean Raw Data
      • <Use Case> Find More Rare Cases
      • <Use Case> Identify Model Weakness
    • Data Metrics
  • Advanced Data Features
    • Image Quality Assessment (IQA)
    • Auto-Tagging
    • Data Discovery (Beta)
    • Data Sampling
    • Data Splitting
    • Data Query
      • Element
      • Logic
      • Use Cases
  • ANNOTATION
    • Before Starting Annotation Task...
    • Create Annotation Task
    • Task Overview
    • Manpower
    • Labeling/Reviewing Panel
      • VQA Labeling Panel
    • Statistics
    • Detail
  • Model Training
    • Train Your AI Model
    • Model Performance
    • Prediction
    • Model Convert (Beta)
    • Model Download (Beta)
  • VisionAI Format
    • VisionAI Data Format
      • coordinate_systems
      • streams
      • contexts
      • objects
      • frames
        • objects
          • bbox
          • cuboid
          • poly2d
          • point
          • binary
        • contexts
        • attributes
      • frame_interval
      • tags
      • metadata
    • Use Case
      • bbox
      • polygon
      • polyline
      • point
      • semantic segmetation
      • classification
      • bbox + cuboid (3d)
      • tagging
    • Format FQA
    • VLM Data Format (VQA)
    • Appendix: Training Format
  • DataVerse Usage
    • Usage and Billing
  • Updates
    • Updates & Release Information
      • Release 2025/4/10
      • Release 2025/1/8
      • Release 2024/11/12
      • Release 2024/09/18
      • Release 2024/08/06
      • Initial Release 2024/01/01
Powered by GitBook
On this page
  • Schema
  • Example
  • frames {}
  • frame_properties {}
  • streams {}
  • stream_properties {}
  • Use Case
  • bbox
  • bbox + cuboid (3D)
  • semantic segmentation
  • tagging
  1. VisionAI Format
  2. VisionAI Data Format

frames

PreviousobjectsNextobjects

Last updated 1 year ago

In the VisionAI format, a frame serves as a container for dynamic, time-based information, encompassing both object and context data. They are used to represent data that is dynamic and time-based in nature, such as information about the location, velocity, and orientation of objects within a sequence.

Each frame is represented by a series of 12 digital numbers that are arranged in order to indicate the temporal relationship.

Schema

Example

"frames": {
    "000000000000": {
        "frame_properties": {
            "timestamp": "2020-04-11T12:00:01.000+0100",
            "streams": {
    	        "camera1": {
                    "uri": "https://image1.path.url.png",
                    "stream_properties": {
          	            "sync": {"timestamp": "2020-04-11T12:00:07.010+0100"}
                    }
                },
                "lidar1": {
                    "uri": "https://lidar0.path.url.pcd",
                    "stream_properties": {
                        "sync": {"timestamp": "2020-04-11T12:00:10.087+0100"}
                    }
                }
            }
        },
        "contexts": {
            "3456a995-a39c-41f2-a9ab-a4c9be693456": { ... },
            "6789a995-a39c-41f2-a9ab-a4c9be697892": { ... }
        },
        "objects":{
            "2eeda995-a39c-41f2-a9ab-a4c9be695beb": {...},
            "cf66fbb2-30b7-43b9-96db-85f70b3619f9": {...}
        }
    },
    "000000000001": {...}
}

frames {}

name
description
type
required

${FRAME_ID}

The id of frame in this annotation. It is the frame order containing 12 digital numbers. (ex. 000000000000, 000000000001, 000000000002)

object

true

frame_properties

Show the information of this frame.

object

true

contexts

Shows all contexts’ dynamic information in this frame. Refer to frames-contexts.

object

false

objects

object

false

frame_properties {}

It describes this frame’s information including the reference time, and corresponding streams.

name
description
type
required

timestamp

A relative or absolute time reference that specifies the time instant this frame corresponds to. Representation of date and time format: "yyyy-MM-ddTHH:mm:ss.FFFZ" (ex. 2021-09-03T11:23:56.000+0100)

time

false

streams

The “streams" information refers to the streams(sensors) that were used to capture data in this particular frame. This information helps to identify the sources of data that are included in that frame.

object

true

streams {}

It describes this frame’s stream information including the corresponding stream name and related data path.

name
description
type
required

${STREAM_NAME}

The name of the stream under this frame. All the streams are matched and described under the visionai - streams.

object

true

uri

The url or file path for this stream data.

object

true

stream_properties

Additional properties of this stream. ex. sync infomation

object

false

stream_properties {}

It contains the additional properties of this stream including the absolute time of the sensor in this frame.

name
description
type
required

sync

Define the frame number of the stream that corresponds to this frame, along with timestamping information.

object

false

timestamp

An absolute time reference that specifies the time instant from the sensor of this frame. Representation of date and time format: "yyyy-MM-ddTHH:mm:ss.FFFZ" (ex. 2021-09-03T11:23:56.000+0100)

time

false


Use Case

More infomation on

bbox

To describe a bbox dataset with one camera sensor:

bbox + cuboid (3D)

To describe a dataset with one camera sensor (bbox annotation) and one lidar sensor (cuboid annotation) in the coordinate system of iso8855-1:

semantic segmentation

To describe a semantic segmentation dataset with one camera sensor:

tagging

To describe a dataset with taggings:

Shows all objects’ dynamic information in this frame. Refer to

Use Case
bbox
bbox + cuboid (3d)
semantic segmetation
tagging
frames-objects
.